Berliner Forscher beschreiben Interaktionen der Dentin-Nanostrukturen

Ergebnisse für Behandlungen relevant

BERLIN (Biermann) – Forscher der Charité – Universitätsmedizin Berlin haben in einer aktuellen Studie gezeigt, dass Dentin in seiner Zusammensetzung langlebiger ist als jedes künstlich geschaffene Material. Die präzise Interaktion zwischen Proteinfasern und mineralischen Nanopartikeln ist dafür verantwortlich, dass Dentin ausgesprochen hohem Druck standhalten kann, wie Messungen an der Synchrotronquelle BESSY II des Helmholtz-Zentrums Berlin gezeigt haben. Die Ergebnisse sind jetzt in der Fachzeitschrift „Chemistry of Materials“* erschienen.

Während Zahnschmelz vor allem aus karbonisiertem Hydroxylapatit (cHAP) gebildet wird, ist Dentin ein komplexes Nanokomposit. In organische Kollagenfasern sind anorganische Nanopartikel aus cHAP-Kristallen eingebettet. Für die hohe Belastbarkeit der Biostruktur sind innere Spannungen verantwortlich, wie die Wissenschaftler um Dr. Jean-Baptiste Forien und Dr. Paul Zaslansky vom Julius Wolff Institut der Charité bereits nachweisen konnten. Die innere Vorspannung innerhalb des Materials erklärt, warum sich kleinere Risse oder Sprünge im Zahnschmelz meist nicht weiter im intakten Dentin ausbreiten.

Nun hat das Team um Zaslansky die Wechselwirkungen zwischen Nanopartikeln und Kollagenfasern in menschlichen Zahnproben genau vermessen: „Erstmals konnten wir nicht nur die Gitterkonstanten der cHAP-Kristalle in den Nanopartikeln präzise bestimmen, sondern gleichzeitig auch die Größen der Nanopartikel ermitteln. Dabei haben wir unter anderem festgestellt, welchen Belastungen sie prinzipiell standhalten können”, sagt Zaslansky.

Einblick in die winzigen Strukturen haben die Forscher in Laboren der Charité erhalten, wie auch durch Messungen an der Synchrotronquelle BESSY II, einem wissenschaftlichen Großgerät am Helmholtz-Zentrum Berlin, das Strahlung vom Terahertz- bis in den Röntgenbereich erzeugt.

In ihren Experimenten haben die Wissenschaftler den internen Druck in den Dentinproben erhöht. Dazu erhitzten sie die Proben auf 125 Grad Celsius, um sie auszutrocknen. Der Wasserverlust lässt die Kollagenfasern schrumpfen, die daraufhin hohe Drucke auf die Nanopartikel ausüben. Mit bis zu 300 Megapascal entsprechen diese Druckverhältnisse der Streckfestigkeit von Baustahl und sind damit 15 Mal höher als der eigentliche Kaudruck, der üblicherweise weit unter 20 Megapascal liegt. Während der Wärmebehandlung wurden die Proteinfasern nicht zerstört, was auf eine Schutzwirkung der mineralischen Nanopartikel hindeutet.

Die Auswertung der Daten zeigt zudem, dass das Gitter der cHAP-Mineralkristalle im Zahn von außen nach innen kleiner wird. „Gewebe nahe des Zahnmarks, das sich in späteren Stadien der Zahnentwicklung gebildet hat, enthält Mineralpartikel mit kleineren Einheitszellen“, stellt Zaslansky fest. Die Größe der Nanopartikel spiegelt diesen Trend wider: Während die Nanopartikel in der Nähe des Zahnschmelzes noch etwa 36 Nanometer lang sind, weisen sie im Inneren des Zahnbeins nur noch 25 Nanometer auf.

„Die Architektur des Dentins ist deutlich komplexer als erwartet. Während der Zahnschmelz sehr hart, aber auch spröde ist, üben die organischen Fasern im Dentin genau den richtigen Druck auf die mineralischen Nanopartikel aus, um das Zahnbein insgesamt noch belastbarer zu machen“, so die Wissenschaftler. Das gilt zumindest, solange der Zahn intakt ist: Kariesbakterien lösen nicht nur den mineralischen Zahnschmelz, sondern produzieren auch Enzyme, die die Kollagenfasern zerstören.

Entscheidend sind die Ergebnisse der aktuellen Untersuchung auch für die Zahnmedizin in der täglichen Anwendung: „Zähne sollten während einer Behandlung, beispielsweise dem Einbringen von Füllungen oder dem Befestigen von Kronen, nass sein und nicht zu stark erwärmt werden. Das vermeidet internen Druck und kann zu nachhaltigeren Behandlungserfolgen führen“, resümiert Zaslansky.

*Jean-Baptiste Forien, Ivo Zizak, Claudia Fleck, Ansgar Petersen, Peter Fratzl, Emil Zolotoyabko and Paul Zaslansky. Water-Mediated Collagen and Mineral Nanoparticle Interactions Guide Functional Deformation of Human Tooth Dentin. Chemistry of Materials. 2016, 28 (10), pp 3416–3427. 

Den Originalbericht finden Sie hier.

Quelle: Charité – Universitätsmedizin Berlin, 02.06.2016

 



© MedCon Health Contents GmbH

Ihr Direktservice

Login

Warenkorb0

enthält keine Produkte


Direktbestellung

Call Back

Rückrufgrund
 
 
 
 
 

Katalog anfordern

Katalog wählen



Zuletzt angesehen

bisher keine Produkte angesehen